Brian Monk

Brian Monk is National Sales Manager, responsible for UTC Climate-Control-Security Custom Air Handling Solutions, specializing in design of air treatment systems, including airborne contaminant control and dedicated outdoor air systems with energy recovery.
Previously Mr. Monk was Director of Sales / Marketing for Carrier Corporation’s custom air handling division. During this period Mr. Monk was also an instructor for Carrier University’s Sustainability Symposiums under the International Association for Continuing Education and Training (IACET) program which provides CEU Credit for Professional Engineering Licensure .
His academic background comprises of a college degree in Applied Science (Building Systems Engineering Technology) from Vanier College of Montreal and a Bachelor of Building Engineering from Concordia University of Montreal. He is a Registered Professional Engineer with the Province of Quebec, Canada, and the Association of Professional Engineers and Geoscientists of British Columbia, Canada.
Mr. Monk is an ASHRAE Distinguished Lecturer, Member of Committee TC 2.3 Gaseous Air Contaminant Removal Equipment, and TG HVAC Security. He is also a Part-Time Professor at Concordia University, in the Faculty of Building, Civil and Environmental Engineering, as well as Vanier College, Building Systems Engineering Technology.
Health Care HVAC designers must consider the control of airborne infectious disease, room pressure relationships, and Outdoor Air Requirements (ASHRAE Standard 62.1) to meet Health Care Facility IAQ concerns. Complicating the dilution strategy are ASHRAE Standard 90.1 guidelines calling for higher efficiency in LEED / High Performing Building Design. The presentation will focus on infection sources, control measures, air movement and proper filtration techniques that can be designed into the building’s air handling system. An overview of anti-microbial construction techniques as they apply to dedicated outdoor air systems will also be discussed.
Additionally, 20-60 cfm of untreated air presents air quality problems where heavy smog exists such as hospitals near freeways. Further, the possibility of a terrorist exposing the occupants to a simple gas such as chlorine or a virus such as anthrax makes the use of dilution potentially all the more hazardous. Large office buildings, airports, government labs, stadium arenas and other buildings containing large crowds or key societal functions are susceptible to such an attack.
The presentation will explore air-cleaning methods that can complement dilution and can serve as an alternative for building protection.
This presentation will focus on the design of Custom DOAS units with respect to providing adequate OA, and considering the IAQ procedure when the reduction of outdoor air pollutants is a concern. A system approach to combining DOAS units with chilled beam technology will be reviewed. Particular focus will be given to this combined strategy’s energy savings potential as it is applied to LEED EA credits.
The assumptions are that a leak or complete release of a toxic agent could be experienced within the storage facility at any given time. The presentation will discuss current methods used to minimize the risk and meet local code requirements when an accidental release of chemical agents occurs. Storage room ventilation strategies and emergency air filtration technologies will also be discussed.
Safe levels of these gases need to be maintained within the pump station, wet / dry well areas, de-watering stations and headworks sectors of the WWTP, therefore adequate make-up air must be designed into the airside system. The presentation will address the airside design concerns within the facilities as well as outdoor environmental emissions concerns. An overview of existing air purification technologies, their application and design limitations will also be discussed.
Nationwide, HVAC designers have recently included more outside air, up to 60 cfm/person, to meet IAQ concerns through dilution. Complicating the dilution strategy are ASHRAE 90.1 guidelines calling for higher efficiency in building design. Recently, the use of outside air has taken on a more serious element, as designers are asked to protect buildings from potential “extraordinary circumstances” that could come in the form of chemical or biological contaminant released close to a building air intake system.
For more than 35 years, the use of Gas Phase Filtration has been used in the reduction of gas phase contamination, more precisely, in controlling corrosion and odor potential in industrial environments, the use of granular activated carbon (GAC) and potassium permanganate has been built on years of research and development and on a growing number of satisfied customers worldwide.
This presentation will focus on an applied engineering unique systematic method, based on experience gathered from installations worldwide, which is effective for all types of industrial and commercial environments. It comprises an integrated approach that utilizes four distinct stages (diagnose, measure, control, optimize) that can be undertaken progressively with each stage constituting an integral segment of the overall solution.
ASHRAE Standard 62, in its current form, employs two procedures to provide acceptable indoor air quality (IAQ) in buildings. These are the Ventilation Rate and Indoor Air Quality (IAQ) Procedures. This standard further endeavors to achieve the necessary balance between IAQ and energy consumption by specifying minimum ventilation rates and IAQ that will be acceptable to human occupants.
This presentation will focus on the use of gas-phase air filtration to specifically address many of the problems encountered in modern airports. It will cover the requirements for using this procedure, the information required, and it will describe several projects where this procedure was successfully implemented.
Whereas the Ventilation Rate Procedure provides only an indirect solution for the control of indoor contaminants, the IAQ Procedure provides a direct solution by reducing and controlling the concentrations of air contaminants, through air cleaning, to specified levels. The Standard acknowledges the air cleaning, along with recirculation, is an effective means for controlling contaminants when using the IAQ Procedure.
This presentation will focus on the use of gas-phase air filtration for compliance with Standard 62 when using the IAQ Procedure. It will cover requirements of using this procedure, the information required, and will describe several projects where this procedure was successfully applied.
- Precision Environmental Control in Museums and Archival Storage Areas
- Hospital Filtration Systems and Airborne Contaminant Control
- Controlling Environmental Tobacco Smoke in Restaurants, Bars and Casinos
- Indoor Air Security Systems and Design Strategies
- Energy Savings by Integrating a Total Filtration Strategy into Building HVAC
Contact Us
Indoor Air Quality Association
1120 Rt 73, Suite 200
Mt Laurel, NJ 08054
(844) 802-4103
info@iaqa.org